
EnTransit Deployment Server
Version 0.7.0

22nd July 2005

1

Organization: Enfold Systems, LLC
Author: Sidnei da Silva <sidnei@enfoldsystems.com>
Author: Alan Runyan <alan@enfoldsystems.com>
Date: 2005-07-15 22:58:55 -0300 (Fri, 15 Jul 2005)
Revision: 1137

Abstract

An in-depth look at the nuts and bolts of EnTransit, Enfold Systems’ solution for cross-
framework content deployment.

Table of Contents

1 Introduction

1.1 Status Quo

1.2 Integration not Isolation

1.3 Zope as Producer

2 Problem Domain

2.1 Java/JSP Integration Problem

2.2 Proposed Solution Strategies

2.3 Entransit, A Solution

2.4 XML, RDBMS, RDF, Oh My!

2.5 Proposed Java Integration

3 Plone, Now and Future

4 Entransit, the Implementation

4.1 Entransit, the Philosophy

4.2 Entransit, the Architecture

5 Installation

5.1 Plone Installation

5.2 Entransit Target Installation

5.3 Delivery Configuration

5.4 Test Deployment

6 Explaining the configuration file

6.1 Pipelines

6.2 Components

Copyright c©, 2005, Enfold Systems, LLC. All rights reserved.

2

6.2.1 XMLRPCLib Marshaller
6.2.2 URL Rewriter
6.2.3 Data Storage
6.2.4 Blob Storage
6.2.5 File Permissions
6.2.6 Archetypes Triple Storage
6.2.7 Command Component

6.3 Client-Server Communication

6.4 Deploying content

6.4.1 Transaction Coordination
6.4.2 SQLObject Integration
6.4.3 Filesystem Integration

7 Collecting data on the Client

7.1 EnSimpleStaging (Enfold Simple Staging)

7.2 StageDeployment

8 Customizing data collection

8.1 Creating an Interface

8.2 Creating an Adapter

8.3 Glueing it all together

8.4 Reviewing prevous steps

8.5 The whole picture

Copyright c©, 2005, Enfold Systems, LLC. All rights reserved.

1 Introduction

This system is beta software that enables a content deployment strategy. This means content
from inside of Plone can be deployed to a remote machine regardless of platform. The remote
machine is responsible to deploy the content. During the Plone Symposium several speakers
will demonstrate Entransit Delivery Frontends.

Currently PHP, Python, Java and .NET examples exist. The developers are at the New Orleans
Symposium. You can contact the developers or info@enfoldsystems.com for more information.

1.1 Status Quo

• Plone is very simple to use. configure. add functionality.

• Plone is built on Zope. Built using Python. Large stack.

• Missing story for the “Rest of the World”, JSP/PHP/ASPX/Ruby/etc.

• Plone has grown the Zope world. Next step. Expose data to other systems.

1.2 Integration not Isolation

• Consuming data sources in Zope is trivial (python is great glue language)

• What about Zope being a producer of content and others subscribing? Limited.

• Many people think of Plone as a black box (look how many default sites exist)

• Lets take it a step further and declare it a black box.

• Add the ability to push the content from Plone to a remote machine in a structured
manner

3

mailto:info@enfoldsystems.com

4

1.3 Zope as Producer

• Relational Database Adapters, data resides in RDBMS

• RSS, clients can intermitently get RSS feeds which may drive other rules

• Filesystem. Writing files to filesystem.

• Messaging systems. Maybe XMLBlaster. MSMQ on Windows. JMS integration?

• Email. Using smtplib. (Sending email from Zope)

• HTTP/DAV/FTP. Running servers where consumers come to Zope.

Copyright c©, 2005, Enfold Systems, LLC. All rights reserved.

2 Problem Domain

It is important to understand the Problem Domain of the typical consulting firm. Clients have
been burned by large integration companies or software companies. Looking for incremental
win and a measurable/visible Return On Investment. As low as possible entry and be sold
longer term visions through evolutionary prototyping. The days of clients spending 250k to
rebuild large website and paying 125k for services are coming to an end. Vignette, Intewoven
and Documentum - all see the handwriting on the wall.

2.1 Java/JSP Integration Problem

Scenario: Client wants to incrementally roll out CMS functionality. They want to use Plone.
They have an existing Java web system. There is a site section called Company that contains
press releases, management team information and office locations/hours. How can we offer
a solution?

2.2 Proposed Solution Strategies

• Use Apache of Enfold Proxy to rewrite /Company section to be served from Plone. Prob-
lems: Maintain 2 “template sets”. To change the company logo in the templates; may
need to update both Plone and Java System.

• Have Plone walk a container and render the contents as HTML using a template identical
to Java web system. Same problem as above. Also Java API has no way to manipulate
the data found on the Filesystem.

• Put the content from Plone into RDBMS. Or render it as XML to the filesystem. These are
better strategies but what is the “process” that wraps this strategy? Or better yet what if
Plone is not available on the delivery server?

• Have Java use Zope in a Web Services capacity. Not easy. Zope provides no native Web
Services engine/integration. Objectrealms made some headway. What if the Zope/Plone
system is behind a firewall which can not be accessed from the web site.

5

6

2.3 Entransit, A Solution

• Run a daemon on the ’target deployment’ server.

• Minimal product bundles data as primitives and sends to ’target’ server

• ’target’ server (Entransit Delivery Server) process the content through a pre-configured
pipeline of operations.

• The pipeline of operations is transaction-aware; they either complete or abort.

• Default stores XML on filesystem and DC/RDF in RDBMS

2.4 XML, RDBMS, RDF, Oh My!

• NOTE: XML/RDF does not need to be discussed. Think of Entransit as the middleware
to a remote machine’s datastore.

• Close your ears for the rest! DO NOT LISTEN.

• The system must be extensible. Take a Choose Your Poison approach.

• Allow developers to use familiar toolchain.

• Possibility to just use XSLT/XML; in Apache or IIS.

• Cross platform, language neutral. Low bar of entry.

• RDF adds tremendous flexibility but adds sophisticated, optional, relationships such as
Translations/Containment.

• Optional Flexibility/Sophistication is Great!

2.5 Proposed Java Integration

• Plone is a black box. Services around black box. Explicit deployment contract (pipeline).

• Maybe create a servlet called ’Company’ or use WEB-INF/Manifest to bind to Company.

• Reuse the existing Java/JSP/Template. Pick up the data externally from Filesystem
and/or RDBMS

• Ability to create touch points to extend before/during/after pipeline processing to notify
Java Web System.

• Developers use familiar toolchain (language, platform, IDE, processes).

• Search engine is done by external system; better documented, faster, and more flexible.

Copyright c©, 2005, Enfold Systems, LLC. All rights reserved.

3 Plone, Now and Future

• Plone covers 70% of the feature sets of most CMS systems.

• With the absolute low cost of entry - its hard to pass up.

• Plone is one of the easiest and most intuitive interfaces on the market

• I would estimate over 10 million (if not much more) in revenue is being generated soley
by Plone marketing and service oriented companies.

• I propose to make Plone even easier to use. And leverage Entransit as the “deployment”
middleware for medium to large sized organizations.

• Time to show CMS market that Plone is no longer an island but an integration application
eager to play nicely.

7

4 Entransit, the Implementation

4.1 Entransit, the Philosophy

• Lets try to follow the Python Zen. Keep it simple.

• Explicit is better than implicit. We will explicitly extract data from the content on the
Zope/Plone system. The processing target server knows what the expect.

• Complex is better than Complicated. There is almost 0 work done on the Zope/Plone
end.

• Flat is better than nested. The current implementation has is very flat. We are not
providing for nested namespaces until we actually need it.

4.2 Entransit, the Architecture

• Zope bundles content into a flat datastructure.

• Datastructure is sent over a socket to a ’target’ server.

• ’Target’ server iterates over order of operations and applies operations on each content.

• The operations are then committed or aborted.

• Zope holds a connection to the remote server through the process. (connection-oriented
protocol/ZEO)

8

5 Installation

Will be made more simple in a commercial product. Open Source will most likely
stay “framework” oriented. We focus on Windows being the “Plone Server” and
Windows/Linux being the Target Server.

5.1 Plone Installation

• Download Enfold Server 1.2 with Zope 2.8.

• Download Entransit tarball

– Copy src/entransit into $ENFOLD/Zope/lib/python

– Copy products/* into $ENFOLD/Products

• In ’Site Setup’ (Plone UI) install products.

5.2 Entransit Target Installation

• Download Entransit tarball

• Extract Entransit tarball into /home/eed

• Edit configuration file

• Start server (note the listening IP and port)

5.3 Delivery Configuration

• Install SQLITE 2

• Install pysqlite 1.x series (stable)

• Install apache/mod_python

• Install vampire

9

10

5.4 Test Deployment

• Ensure the Workspace is configured with appropriate target

• Add some content in the Public Node

• Go back to workspace

• Deploy the workspace.

• Look at the delivery system to see if content appears.

Copyright c©, 2005, Enfold Systems, LLC. All rights reserved.

6 Explaining the configuration file

EnTransit configuration uses the ZConfig library for providing a simple and extensible Apache-
like configuration. The configuration file is the heart of the system and it’s the first place (and
in most cases the last) a EnTransit user will touch.

The configuration file has a few global options, and then a fixed set of pipelines where you
define components that will be executed in the order they are found in the pipeline.

Here’s an example configuration file:

%define TARGET /tmp/deployment
%define BACKUP /tmp/backup
%define FILE_PERM 0644
%define DIR_PERM 0755
%define URL http://awkly.org/files
%define CONNECTION_STRING sqlite:///tmp/test.sqlite
%define ADDRESS 127.0.0.1:9001

<config>
target-path $TARGET
directory-creation-mode $DIR_PERM
address $ADDRESS

<pipeline before-hooks>
<command>
path src/entransit/scripts/report/start.sh

</command>
</pipeline>

<pipeline after-hooks>
<command>
path src/entransit/scripts/report/finish.sh

</command>
</pipeline>

<pipeline storage>
<urlrewrite>
Must come first. It rewrites URLs in marshalled files in-place,
before they are moved to the destination stage by the datastorage

11

12

component.
engine entransit.storage.url.UIDToURL
base-url $URL
prefix $TARGET

</urlrewrite>
<datastorage>
backup-path $BACKUP

</datastorage>
<fileperms>
file-mode $FILE_PERM
directory-mode $DIR_PERM
storage-name data-storage

</fileperms>
<blobstorage>
backup-path $BACKUP

</blobstorage>
<fileperms>
file-mode $FILE_PERM
directory-mode $DIR_PERM
storage-name blob-storage

</fileperms>
<command>
path src/entransit/scripts/report/step.sh

</command>
<archetypes-triple-storage>
connection-string $CONNECTION_STRING
backup-path $BACKUP
target-path $TARGET/relationships.rdf

</archetypes-triple-storage>
</pipeline>

<pipeline metadata>
<sqlobjectmeta>
implementation entransit.metadata.CMFMeta
connection-string $CONNECTION_STRING

</sqlobjectmeta>
</pipeline>

</config>

The components in the pipeline are always called with the same order and components in the
same pipeline will always be called with the same payload.

All operations executed by components in the pipeline should happen transactionally.

Components that plug in the pipeline should work in isolation and should not affect any global
state except the minimal necessary to coordinate with the main transaction. However if some
dependency between two components in the pipeline they can use a dictionary that is shared

Copyright c©, 2005, Enfold Systems, LLC. All rights reserved.

13

by all components in the pipeline for communicating some state.

6.1 Pipelines

We have defined five pipelines. Those should suit most of the use-cases. The existing pipelines
are:

marshall Convert incoming data to a flat file representation

storage Takes care of storing the file representation and any other infomration concerning the
file, transactionally

metadata Handles the storage of metadata about the file, like last modification, etc

before-hooks Executed at the start of the deployment operation

after-hooks Executed at the end of the deployment operation

The flow across the pipelines goes like this:

1. The before-hooks pipeline is executed. This only happens once, at the start of the
deployment operation. No information about the content being deployed is passed
to this pipeline.

2. For each entry deployed, the content goes first through the marshall pipeline, then
through the storage pipeline and then through the metadata pipeline.

3. After all entries have been processed, the after-hooks pipeline gets executed.

6.2 Components

There are a couple default components provided with the system. They were designed for a
specific use-case which was the target goal since we started planning the system so might not
fit all the needs, but we hope they can be useful for most of the cases and also serve as starting
point for creating new components.

6.2.1 XMLRPCLib Marshaller

Marshalls incoming data to the format used for XML-RPC communication using the xmlrpclib
library. This was used because:

1. There are libraries available for parsing this simple format in most existing lan-
guages/frameworks.

2. It’s a very simple and still readable XML format, so if there’s no parser provided by
default you can easily write one.

To change the format which incoming data is marshalled to, you just need to replace this
component in the configuration file.

Copyright c©, 2005, Enfold Systems, LLC. All rights reserved.

14

6.2.2 URL Rewriter

Content being deployed might have URLs pointing to the server where they are deployed from,
specially with Zope.

One of the goals of our use-case was to use kupu to create content in Plone and then deploy
content. kupu when used in conjunction with Archetypes generates urls that look like:

When inside Zope, resolveuid is actually a script that will resolve the UID to a URL and direct
the user there. While we could do the same, instead we went a step further and created a
component to resolve those UIDs to URLs at deployment time, on the deployment server.

This is more of a proof of concept as it does depend on objects being pointed by the UID to
have been already deployed by the time the UID gets resolved to a URL, but will work just fine
if that constraint is fulfilled.

The core of the rewriting engine can be changed by providing a different dotted path to a class
on the engine parameter of the <urlrewrite> directive.

6.2.3 Data Storage

The Data Storage takes the file (or files) created by the marshall pipeline and stores them in
the hierarchy pointed by the target-path global config option.

There is one configurable argument for the Data Storage which is backup-path. This is used to
backup existing files that are being updated or removed by the deployment operation. Once the
operation is finished sucessfully those backup files are discarded, and if the operation fails to
finish those backup files are restored to their original location. This provides a transactional
update to the target repository.

6.2.4 Blob Storage

This is basically the same as the Data Storage, but instead of consuming files generated by the
XMLRPCLib Marshaller, it does consume files generated by the Blob Marshaller which in turn
doesn’t do much more than picking up data marked as blob-ish and dump it unmodified to a
file.

6.2.5 File Permissions

The File Permissions component updates the permission of the files in the target repository
after they have been created/updated. They are dependent on the storage being used and use
the state sharing facility to discover the filename of the file changed by the storage component
they are bound to.

Copyright c©, 2005, Enfold Systems, LLC. All rights reserved.

15

6.2.6 Archetypes Triple Storage

We keep information about Archetypes relationships between entries deployed by using a
Triple Store. This component makes use of the rdlib library, backed by a SQLObject back-
end, which in turn stores the triples in a relational database.

Upon any modification to the Triple Store, the system is notified and a component is dinami-
cally appended to the after-hooks pipeline, so that if at the end of the deployment operation
the entire RDF graph is dumped to a file on the filesystem using the RDF-XML representation.

6.2.7 Command Component

The Command Component is the only one that is not expected to have transactional behaviour
(though it could in theory). It does basically execute a system call to run a executable or script.

Out-of-the-box, EnTransit comes configured with three command components: One is executed
on the before-hooks and creates a report file recording the time the deployment operation
started. The seconds sits in the storage pipeline and writes a simple record for each entry
deployed. And the last one is executed on the after-hooks pipeline and writes a marker to
the report file to log the time the deployment operation finished.

6.3 Client-Server Communication

Communication between the client and server is done using the zrpc library, originally de-
signed for ZEO. zrpc does basically Remote Procedure Call, like xml-rpc for instance, but
instead of using a xml-based protocol it uses the pickle python module.

How it works:

1. The client has a stub where you can call methods

2. The method name and arguments are pickled and sent over the wire

3. On the other side, the method name and arguments are unpickled

4. The server then calls the method on the server-side handler

5. The return value of the method call is then pickled and sent back to the client

6. The client-side unpickles the returned values and returns then to the caller in step
1

Another nice feature is that if an exception happens during the method call on the server side,
the exception is pickled and sent to the client which then re-raises the exception as if it had
happened locally.

Care must be taken so the arguments passed here are picklable and can be unpickled on the
server. Remember the server needs to be able to find the classes of objects you send as argu-
ments otherwise the server will complain and disconnect you.

Copyright c©, 2005, Enfold Systems, LLC. All rights reserved.

16

6.4 Deploying content

To make things even more simple, we have simplified the API to a single method called deploy.
The only way to modify state on the server is by calling this method. Other than that, the server
acts like a black box.

This function takes only one argument, struct which is a list of triples with:

key It’s the identifier for that specific entry. By default it’s used as the relative filename from
the target deployment path.

op Operation to be performed. Can be one of ’add’, ’update’ or ’remove’.

data Payload for that specific entry.

The default handler has a very simple flow that can be described like this:

1. Start a transaction

2. For each entry, execute the operation requested with the given payload

3. If the transaction was successful, commit the transaction

4. If the transaction failed, rollback the transaction

6.4.1 Transaction Coordination

We use the transaction library. that was factored out from ZODB somewhere after ZODB 3.2
mainly for inclusion within Zope 3.

In order to coordinate with the transaction’s begin/abort/commit, components can register
a Data Manager with the main Transaction Manager. When any meaningful operation is
executed by the Transaction Manager, a hook notifies the Data Managers that should then
react accordingly.

We have done this in a couple places for Entransit.

6.4.2 SQLObject Integration

SQLObject provides a Transaction abstraction for standalone use. Any time you want to
perform some operation in SQLObject and you want that operation to be transactional, you
get hold of a Transaction object and call it’s commit or rollback methods at your leisure.

For EnTransit, we have registered a facade Data Manager that delegates the commit and abort
calls down to SQLObject Transaction’s commit and rollback methods accordingly.

The SQLObject Transaction is created implicitly, that is, only when needed. So if some entry be-
ing deployed doesn’t trigger a component that uses SQLObject, the SQLObject Transaction and
the corresponding Data Manager will not be registered with the main Transaction Manager.

Copyright c©, 2005, Enfold Systems, LLC. All rights reserved.

17

6.4.3 Filesystem Integration

EnTransit uses the Command pattern for operations performed with files on the filesystem.

Each operation performed results in the creation of a Command object that is then appended to
a stack. This stack happens to also be a Data Manager that is registered with the Transaction
Manager.

When the Data Manager is notified of a commit, each command in the stack is executed in the
order they were created.

When the Data Manager is notified of a abort, each command in the stack is reversed by
calling the revert method of the Command object. The order of the commands is also reversed,
so the last command created is executed first, etc.

Copyright c©, 2005, Enfold Systems, LLC. All rights reserved.

7 Collecting data on the Client

The easiest and most effective way of doing deployments from a client is to keep some informa-
tion about the state of the client system at the time the last deployment has been executed and
do a incremental deployment. Note that is not required, but helps a lot to keep the consistency
of the deployed site and to save time and bandwidth.

Building a application from scratch that did this and integrated with Plone is a non-trivial task.
However, we already had a system that did something similar so extending that system a bit
to plug the deployment client into it was a snap.

To make the task simpler, we did define a simple set of common attributes that we wanted to
see published from Plone into the deployment target and a small registry of functions to be
called for each attribute. After running a content object through this, a dictionary mapping
attribute to value would be generated.

Later on, we turned this into an adapter, so people can register more specific adapters to their
custom content type and more easily extract the needed information without having to touch
the source.

7.1 EnSimpleStaging (Enfold Simple Staging)

EnSimpleStaging is a custom staging implementation using CMFStaging and
ZopeVersionControl. The main difference from default uses of CMFStaging is that
instead of working with documents individually, we work with the stage as a whole.

In addition to that, we can do incremental and full deployments.

Also, instead of exposing stages in the way CMFStaging does, we hide them and handle them
internally.

The source stage is a specialized folderish type called Staging Area. A Staging Area has a
nice and very informative default page that lists the last modifications, a history of deployments
and controls for full/incremental deployment.

Each source stage maps to it’s own destination stage. A destination stage can be any
container in a Plone site. The destinations can be nested and extra care is taken not to step on
nested stage destinations.

Incremental deployments keep information internally in a diff-like fashion, listing the
added/removed/updated content objects.

18

19

There is also a minimal support for events built into Enfold Simple Staging, and that’s where
the next product comes in.

7.2 StageDeployment

StageDeployment basically subscribes to the deployment events fired by the EnSimpleStaging
product to be notified about when a deployment happens.

Once they receive such a notification, they extract the information about
added/removed/updated content objects and recursively build a structure with informa-
tion about those objects as expected by EnTransit.

The next step is then to connect to the EnTransit server and deploy those entries.

The trick here is that as any exception that happens at the EnTransit server is propagated
back to the client, we just let the exception received pop out and abort the Zope transaction.
This way the operations both on the Zope server and EnTransit result either in a commit or
abort in both sides.

Copyright c©, 2005, Enfold Systems, LLC. All rights reserved.

8 Customizing data collection

Creating a custom adapter for collecting information specific to your own custom content type
is very simple stuff. This is really the minimal stuff you need to know about Five/Zope 3 to use
the system and gives you a lot of flexibility for very little cost.

Suppose you have your very own content object defined in your product. The class is defined
in MyProduct/content/article.py.

8.1 Creating an Interface

Now, supposing you don’t have any Zope3-style interface defined in your product, let’s define
one. Create a file at MyProduct/interface.py and open it in your editor of preference. Now
type in the following:

from zope.interface import Interface

class IArticle(Interface):
"""A Interface for Article
"""

That’s about it. Now you have a very simple Zope 3 interface.

8.2 Creating an Adapter

The next step is to create the adapter that will provide the functionality needed by
StageDeployment. An adapter is nothing too fancy. It’s basically a class with a well-defined
constructor that happens to implement a specific interface.

For our example, we want to implement the IInformationExtractor interface that is defined
in StageDeployment/interface.py. This interface has only one method named extract that
returns a dictionary mapping attributes to values for the specific content object being deployed.

Here’s a listing for the interface definition:

class IInformationExtractor(Interface):

def extract():

20

21

"""Return a simple data structure containing information
suitable for deployment about the adapted object.
"""

Now, to create your adapter, create a file at MyProduct/adapter.py and type the following into
that file, assuming your Article content has methods named Title and getBody to return the
title and body attributes of your content respectively:

class ArticleExtractor:

def __init__(self, context):
self.context = context

def extract(self):
return {’title’: self.context.Title(),

’body’: self.context.getBody()
}

Great, so that’s your first Zope 3 adapter! The only thing special about it is the constructor
(the __init__ method) which takes a single argument named context, which is the target
object being adapted to the requested interface.

8.3 Glueing it all together

Now, for the last part, glueing this together. This step is reasonably simple and consists of
creating a configuration file using the ZCML language, which is a XML-based configuration
language specifically designed for Zope 3.

Create a file under MyProduct/configure.zcml with the following content:

<configure xmlns="http://namespaces.zope.org/zope"
xmlns:five="http://namespaces.zope.org/five">

<adapter for=".interface.IArticle"
provides="Products.StageDeployment.interface.IInformationExtractor"
factory=".adapter.ArticleExtractor"
/>

<five:implements
class=".content.article.Article"
interface=".interface.IArticle"
/>

</configure>

Again, nothing too fancy here. But let’s dissect it line by line.

Copyright c©, 2005, Enfold Systems, LLC. All rights reserved.

22

On the first line, we see the tag <configure>. This is required and means to Zope 3 that
you are starting a configuration statement. In the same tag you see a xmlns attribute. That
attribute is declaring that any tag inside this block is in the namespace pointed by the tag
value. There’s also a xmlns:five attribute. This is declaring that tags prefixed by five: are
on the namespace pointed by the tag value.

Next, the <adapter> tag. This tag tells Zope 3 you are registering a adapter. It has 3 tags, for,
provides and factory.

for This adapted will be registered for objects declaring to implement the interface listed here

provides The interface that the adapter declares to implement

factory The location of the factory to be used for instantiating the adapter

And finally the five:implements tag, which has two attributes, class and interface.

class The class that you are declaring to implement the interface

interface The interface declared to be implemented

8.4 Reviewing prevous steps

Ok, that’s it! What you have accomplished here:

1. You created a marker interface, that is a blank interface that doesn’t have any
attributes or methods or fields.

2. You created a adapter.

3. You bound the marker interface to your content class using the
five:implements directive.

4. You registered a adapter from IArticle to IInformationExtractor using the
<adapter>> directive.

Notice that your product does not depend on Five or Zope 3 so far. As long as you do not
import the adapter.py or interface.py modules from your product anywhere your product
should still work on a non-Five enabled environment.

As soon as you drop your product on a Five-enabled environment though, Five will find your
configure.zcml file and execute it, effectively registering the adapter and declaring your class
to implement the IArticle interface.

Copyright c©, 2005, Enfold Systems, LLC. All rights reserved.

23

8.5 The whole picture

Now, back to StageDeployment, what happens during deployment if it finds a instance of your
Article content is:

1. StageDeployment asks for a adapter to IInformationExtractor

2. Zope 3 will notice you implement the IArticle interface and will lookup a adapter
from IArticle to IInformationExtractor

3. It will find the factory you registered, which is the ArticleExtractor class in the
adapter.py module.

4. And create an instance of ArticleExtractor passing your Article content in-
stance to the constructor

5. StageDeployment finally calls the extract method of your ArticleExtractor
class and receives a dictionary instance with title and body as elements.

6. StageDeployment pushes that piece of data to the EnTransit server along with
any other entry that was deployed

Copyright c©, 2005, Enfold Systems, LLC. All rights reserved.

	Table of Contents
	1 Introduction
	1.1 Status Quo
	1.2 Integration not Isolation
	1.3 Zope as Producer

	2 Problem Domain
	2.1 Java/JSP Integration Problem
	2.2 Proposed Solution Strategies
	2.3 Entransit, A Solution
	2.4 XML, RDBMS, RDF, Oh My!
	2.5 Proposed Java Integration

	3 Plone, Now and Future
	4 Entransit, the Implementation
	4.1 Entransit, the Philosophy
	4.2 Entransit, the Architecture

	5 Installation
	5.1 Plone Installation
	5.2 Entransit Target Installation
	5.3 Delivery Configuration
	5.4 Test Deployment

	6 Explaining the configuration file
	6.1 Pipelines
	6.2 Components
	6.2.1 XMLRPCLib Marshaller
	6.2.2 URL Rewriter
	6.2.3 Data Storage
	6.2.4 Blob Storage
	6.2.5 File Permissions
	6.2.6 Archetypes Triple Storage
	6.2.7 Command Component

	6.3 Client-Server Communication
	6.4 Deploying content
	6.4.1 Transaction Coordination
	6.4.2 SQLObject Integration
	6.4.3 Filesystem Integration

	7 Collecting data on the Client
	7.1 EnSimpleStaging (Enfold Simple Staging)
	7.2 StageDeployment

	8 Customizing data collection
	8.1 Creating an Interface
	8.2 Creating an Adapter
	8.3 Glueing it all together
	8.4 Reviewing prevous steps
	8.5 The whole picture

